42nd Annual Maize Genetics Conference

March 2000

Thursday, 16 March

6:00-7:00 PM DINNER

7:15-7:30 PM ANNOUNCEMENTS

7:30-9:00 PM PLENARY TALKS Chair: Sue Wessler

7:30 Jane Langdale, Oxford University

Cellular differentiation in maize leaves

8:15 Elliot Meyerowitz, California Institute of Technology

Cell-cell communication in the Arabidopsis shoot apical meristem

9:30PM Posters may be hung Thursday evening and must be removed by noon Sunday

BEER WILL BE AVAILABLE ACROSS FROM THE POSTER AREA UNTIL 2:00AM

FRIDAY, 17 March

7:00-8:30 AM BREAKFAST

8:30-10:10AM

Chair: Neelima Sinha

THE GENE

8:30 Laurel Mezitt, University of California-Davis

SESSION #1

Cloning and Characterization of *Sucrose Export Defective1 (Sxd1)* 8:45-8:50 Discussion

8:50 Bradley Till, University of Oregon

CRS1: a nucleus-encoded protein required for the splicing of the maize chloroplast *atpF* group II intron

9:05-9:10 Discussion

9:10 Damon Lisch, UC Berkeley

Mutations that affect paramutation also reverse Mu element methylation 9:25-9:30 Discussion

9:30 Elsbeth Walker, University of Massachusetts, Amherst

Cloning of maize *yellow stripe1 (ys1)*, an iron-regulated gene involved in high affinity Fe(III) uptake

9:45-9:50 Discussion

9:50 Donal M. O'Sullivan, IACR-Long Ashton Research Station

Use of a new maize BAC library to study intra-specific variation at the Rp1 rust resistance superlocus

10:05-10:10 Discussion

10:10-10:40AM BREAK WITH BEVERAGES

10:40-12:20PM

SESSION 2

Chair: Torbert Rocheford

THE SEED

10:40 Matthew Evans, University of Wisconsin-Madison

Maternal gametophyte effect genes in maize seed development 10:55-11:00 Discussion

11:00 Philip Becraft, Iowa State University

Positional cues specify and maintain aleurone cell fate in endosperm development 11:15-11:20 Discussion

11:20 Kirsten Nielsen, NC State University

Differential response of pathogenic and non-pathogenic fungi to maize ribosomeinactivating protein

11:35-11:40 Discussion

11:40 Brian Scheffler, USDA-ARS-NPURU, University, Mississippi

Molecular characterization of *In-D: A* semi-dominant mutation of the *intensifier* locus 11:55-12:00 Discussion

12:00 Odd-Arne Olsen, Agricultural University of Norway

Genetic dissection of nuclear endosperm development

12:15-12:20 Discussion

12:30-1:30PM LUNCH

1:30-2:30PM	POSTER SES	SSION 1	Contributors will be at EVEN-NUMBERED posters
2:30-3:30PM	POSTER SES	SSION 2	Contributors will be at ODD-NUMBERED posters
	BEVERAG	ES WILL BE A	VAILABLE FROM 3:30-4:00
4:00-5:30PM	FORUM:	Strategies/P Public Secto	lans to Enhance Maize Transformation in the or
Chair:	Kelly Dawe		
Speaker:	Steve Moose	, University o	f Illinois
Panel:	Jeff Bennetzen, Purdue University (Moderator) Wayne Parrott, University of Georgia Michael Spencer, Monsanto Patrick Schnable, Iowa State University Vicki Chandler, University of Arizona Lyuda Sidorenko, Iowa State University Steve Moose, University of Illinois		

6:00-7:00PM DINNER

7:15PM WORKSHOP: COMPARATIVE GENOMICS Chair: Cliff Weil Speakers: Molly Jahn, Cornell University Gernot Presting, Clemson University Andy Kleinhofs, Washington State University 9:30-10:00PM POSTER SESSION #3 Contributors will be at EVEN-NUMBERED posters 10:00-10:30PM POSTER SESSION #4 Contributors will be at ODD-NUMBERED posters BEER WILL BE AVAILABLE ACROSS FROM THE POSTER AREA UNTIL 2:00AM SATURDAY, 18 March 7:00-8:30AM BREAKFAST SESSION #3 Chair: Cliff Weil 8:30-10:10AM THE PLANT (PART 1) 8:30 Laurie Smith, University of California-San Diego

Molecular analysis of the Tangled gene

8:45-8:50 Discussion

8:50 Mark Lubkowitz, University of California-Berkeley

Assembling a genetic network for regional identity along the proximo-distal axis of the leaf 9:05-9:10 Discussion

9:10 Dave Jackson, Cold Spring Harbor Lab The *fasciated ear2* gene encodes a leucine rich repeat protein that controls inflorescence and floral development in the maize ear

9:25-9:30 Discussion

9:30 Luzie Wingen, Max-Planck-Institute for Breeding Research

A candidate gene for the *Tunicate1* locus 9:45-9:50 Discussion

9:50 Enrico Scarpella, Institute of Molecular Plant Sciences, Leiden University

A role for the rice homeobox gene *Oshox1* in provascular cell fate commitment 10:05-10:10 Discussion

10:10-10:40AM BREAK WITH BEVERAGES

And now for our exploratory foray into the Concurrent Session Experiment 10:40-12:25 CONCURRENT SESSIONS

Session # 4 THE GENOME Session # 5 THE PLANT (Part 2) Session # 6 THE GENE

Session # 4 THE GENOME

Chair: Kelly Dawe

10:40-10:45 Introduction to session

10:45 Mei Guo, Pioneer Hi-Bred Int. Inc.

Insights into molecular basis of heterosis: mRNA profiles of maize hybrids and inbred parents 11:00-11:05 Discussion

11:05 Anjali Dogra, University of Missouri-Columbia

Dosage dependent control of heterosis

11:20-11:25 Discussion

11:25 Edward Braun, Ohio State University

Uncovering complex patterns of evolution for genes encoding *Myb*-domain proteins 11:40-11:45 Discussion

11:45 Evelyn Hiatt, University of Georgia

The TR-1 knob repeat exhibits extreme levels of neocentromeric activity

12:00-12:05 Discussion

12:05 Nick Lauter, University of Minnesota

Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms

12:20-12:25 Discussion

Session #5—THE PLANT (Part 2)

Chair: Neelima Sinha

10:40-10:45 Introduction to session

10:45 Michael Muszynski, Pioneer Hi-Bred Intl. Inc.

Modifying flowering time through modulation of *indeterminate1 (id1)* expression 11:00-11:05 Discussion

11:05 Jennifer Nelson, University of California-Berkeley

Mosaic analysis of a dorsiventral leaf polarity mutant 11:20-11:25 Discussion

11:25 Debbie Laudencia-Chingcuanco, University of California-Berkeley

Indeterminate floral apex 1 is required for maintenance of meristem identity 11:40-11:45 Discussion

11:45 Sharon Kessler, University of California-Davis

Characterization of *xcl*, a mutation affecting planes of cell division 12:00-12:05 Discussion

12:05 Matt Sauer, University of Pennsylvania

EPC, a gene controlling juvenile to adult phase change in maize

12:20-12:25 Discussion

Session #6—THE GENE

Chair: Becky Boston

10:40-10:45 Introduction to session

10:45 Jay Hollick, University of California, Berkeley

Diverse roles of required to maintain repression (rmr) factors in gene silencing

11:00-11:05 Discussion

11:05 Subbaiah Chalivendra, University of Illinois

Altered patterns of sucrose synthase phosphorylation and localization precede root tip death in anoxic maize seedlings

11:20-11:25 Discussion

11:25 Brian Dilkes, University of Arizona

Cell cycle regulatory components in the endosperm endoreduplication cycle 11:40-11:45 Discussion

11:45 Binzhang Shen, Rutgers University

Ac tagging and characterization of a terpenoid cyclase gene induced by herbivore damage 12:00-12:05 Discussion

12:05 Suzy Cocciolone, Iowa State University

Regulation of the maize *a1* promoter in transgenic plants 12:20-12:25 Discussion

12:30-1:30PM LUNCH

POSTER SESSION #5 Contributors will be at ODD-NUMBERED posters

2:30-3:30PM

POSTER SESSION #6

Contributors will be at EVEN-NUMBERED posters

BEVERAGES WILL BE AVAILABLE FROM 3:30-4:00

4:00 WORKSHOP: Genomics Resources Chair: Sue Wessler

Speakers: Vicki Chandler, University of Arizona Functional genomics of chromatin genes

> Virginia Walbot, Stanford University Maize gene discovery project

Jeff Bennetzen, Purdue University

Genomic sequence comparisons between maize BACs and orthologous regions of barley, rice, sorghum and wheat

Ed Coe, USDA-ARS, Columbia, Missouri

Comprehensive genetic, physical, and database resources for maize

Kelly Dawe. University of Georgia

Functional genomics of maize centromeres

Rob Marteinssen, Cold Spring Harbor Laboratory

Center for maize targeted mutagenesis

Lisa Harper, University of California-Berkeley An integrated map of cytological, genetic and physical information of maize

Ron Phillips, University of Minnesota

Radiation hybrid and cloning system for the genetic and physical mapping of the corn genome

Jo Messing, Rutgers University

The international rice genome sequencing project

Don McCarty, University of Florida

Applied genomics: strategies for efficient molecular analysis of complex genetic systems

> 6:00-7:00PM DINNER

7:30-9:00PM

PLENARY TALKS

Chair: Ben Bowen

7:30 Graham Moore, John Innes Centre,

Wheat, a model or commodity--chromosome pairing and polyploidy

POSTER SESSION #8

8:15 John Doebley, University of Wisconsin,

Genetic evidence and the evolution of maize

9:30-10:00PM POSTER SESSION #7

Contributors will be at ODD-NUMBERED posters

10:00-10:30PM

Contributors will be at EVEN-NUMBERED posters

BEER WILL BE AVAILABLE ACROSS FROM THE POSTER AREA UNTIL 2:00AM

Sunday, 19 March

7:00-8:30AM BREAKFAST

8:30-10:10AM SESSION #7

Chair: Becky Boston

THE GENOME

8:30 Mark Settles, University of Florida Genomic approaches to seed development 8:45-8:50 Discussion

8:50 Jeffrey Wong, University of Illinois

Molecular marker mapping of chromosomal regions associated with carotenoids and tocopherols in maize

9:05-9:10 Discussion

9:10 Jeffry Thornsberry, North Carolina State University

Association tests of candidate genes regulating plant height and flowering time 9:25-9:30 Discussion

9:30 Tim Helentjaris, Pioneer Hi-Bred Int., Inc

Insights from applying expression profiling to female development under stress 9:45-9:50 Discussion

9:50 Peter Carlton, UC Berkeley

Centromeres, telomeres, and meiotic chromosome pairing

10:05-10:10 Discussion

10:10-10:40AM BREAK WITH BEVERAGES

10:40AM MEETING ADJOURNS

LIST OF POSTERS

I Biochemical Genetics

1	Miguel Cervantes- Cervantes	Preliminary characterization of the geranylgeranylpyrophosphate synthase (GGPPS) gene family of maize.
2	Prem Chourey	Metabolic analyses of a double mutant of sucrose synthase (SuSy) genes in developing endosperm.
3	Prem S. Chourey	Analysis of a double mutant of sucrose synthase (SuSy) genes that shows evidence of a third SuSy gene.
4	Joanna Cross	ADP-Glucose Pyrophosphorylase Activity from Maize-Potato Hybrids
5	Jorg Degenhardt	Biochemical and molecular characterization of the terpene synthase gene family in <i>Zea mays</i>
6	Karsten Frenzel	Characterisation of zmKCS, a fl-Ketoacyl-CoA-Synthase from Maize possibly involved in Wax Biosynthesis
7	Diane Janick-Buckner	Characterization of the camouflage 1 mutant of maize
8	Kirsten Nielsen	Differential response of pathogenic and non-pathogenic fungi to maize ribosome-inactivating protein
10	Bruce R Thomas	Regulation of sugar production in cereal seedlings
11	Elsbeth Walker	Cloning of maize yellow stripe1 (ys1), an iron-regulated gene involved in high affinity Fe(III) uptake.
12	Jonathan Walton	Functional Genomics of Hemicellulose Biosynthesis
13	Xuelu Wang	QTL mapping of elongation factor 1-alpha (eEF1A) content and characterization of eEF1A genes in maize endosperm
14	Chunyuan Wu	Biochemical and reverse genetic analysis of the maize starch debranching enzyme ZPU1
15	Eleanore Wurtzel	A heterologous system to identify strategic genes for metabolic engineering of the maize carotenoid biosynthetic pathway.
16	Galina Zayakina	Highly polymorphic zeins of maize represent a useful source of genetic markers.

II Cytogenetics

17	Amie Franklin	Analysis of desynaptic 2 supports an involvement of the Rad51 recombination protein in homologous chromosome synapsis
18	Inna Golubovskaya	The pam1 gene: Bouquet Formation and Homologous Synapsis
19	Lisa Harper	Towards an Integrated Map of Cytological and Genetic Information
20	Eatianna Kaszas	Phosphorylation of histone H3 is correlated with changes in sister
20	Letterine Raszas	chromatid cohesion during meiosis in maize
21	Vongli	Development and characterization of maize-Tripsacum F1 hybrid
21	I ONG EI	population segregating for apomixis
22	loshua Marshall	FRETM as an optical technique to determine molecular interactions in
22	JUSHUA MAISHAII	maize kinetochore/centromere on a sub-optical scale
23	Graham Moore	Wheat, a model or commodity-chromosome pairing and polyploidy
24	Ron Okagaki	Towards an oat-maize radiation hybrid panel
25	Brent Page	Evidence For and Evolutionary Relationship Between Chromosome 4
20	Diciti i age	and the B Chromosome, Based on Related Centromere Repeats
		Comparison of the genetic map to the physical map of molecular
26	Monther Sadder	markers related to QTLs for resistance against southwestern corn borer
20	Monther Sauder	(Diatraea grandiosella D.) on pachytene chromosomes using in situ
		hybridization in maize (Zea mays L.)
27	Stenhen Sowinski	Effect of Abnormal Chromosome 10 on the Frequency of
21	Stephen Sowinski	Recombination in maize
28	Nathan Springer	Epigenetic inheritance of an aneuploid induced phenotype
20	M Isabel Vales	Maize-chromosome 9 rearrangements in progenies of oat-maize
23		chromosome 9 radiation hybrids
30	David F. Weber	Use of the r-X1 Deficiency System to Recover Trisomics for
50	David I : Webei	Chromosome 8 in Maize
31	Pascale Williams	CRP1: A Translational Activator in Maize Chloroplasts
32	Hong-Guo Yu	Maize single-kinetochore chromosomes can align at the equator by
52		tension-sensitive interactions with opposite spindle poles
33	Yin-Zhou Zheng	Analysis of a small cluster of B specific repeat sequences in the long
00		arm of the B chromosome

III Cytoplasmic Inheritance

34	Christine Chase	Transposon tagging of nuclear genes that regulate mitochondrial gene expression
35	Chester Dewald	Comparison of Seven Inbred Maize Lines with Their BC-3 Derivatives in Tripsacum Cytoplasm
36	Susan Gabay-Laughnan	Genetic characterization of CMS-S restorer-of-fertility alleles in Mexican races of maize and teosinte

IV Developmental Genetics

37	Debbie L. Alexander	Phenotypic analysis of corkscrew; a recessive mutation affecting shoot development
38	Robert Baker	Characterization of nl*1179, a mutant affected in leaf development
39	David Barnes	ramosa2 affects a determinacy switch point in the developing maize inflorescence
40	Peter Bommert	Analysis of embryo-specific mutants in Zea mays reveals that radial organization of the maize proembryo preceeds the establishment of the shoot apical meristem

41	David Braun	Genes controlling later events in leaf development: liguleless1 and tie- dyed1
42	Gladys Cassab	Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the guiescent center
43	Andrew Doust	Inflorescence development in Setaria
44	Matthew Evans	Maternal Gametophyte Effect Genes in Maize Seed Development
45	Marcelo Friedlender	Activation of maize defense markers by Les9
46	Giulini A. Gavazzi G	Characterization of maize mutants affecting embryogenesis
10		Characterization of the dominant leaf mutation Wab (Wavy Auricles in
47	Angela Hay	Blades).
48	Momoyo Ito	Epidermal cell differentiation and radial pattern formation in grass embryogenesis.
49	Lynne Jesaitis	laminate coleoptile is required for coleoptile identity and normal leaf
50	Nick Kaplinsky	rgo1 and ids1 interact to control spikelet meristem identity and new spikelet identity mutants.
51	Michael Kolomiets	Characterization of clear spot-1 (csp1), a disease lesion mimic mutant of maize.
52	Yew Lee	To understand how plants sensesce
53	Jun Lim	Radial patterning during regeneration of the root apical meristem in
54	Mark Lubkowitz	Discerning the function of liguleless3 in leaf development: a search for downstream targets
55	Paula McSteen	barren inflorescence2 (bif2), barren stalk1 (ba1), Barren inflorescence1 (Bif1) and Suppressor of sessile spikelet1 (Sos1): multiple pathways for axillary meristem development in the maize inflorescence
56	Jennifer Moon	Cloning and Characterization of Maize Lazy-1
57	M.G. Neuffer	Combinations of Light and Temperature
58	Asuka Nishimura	Analyses of genes involved in the lateral organ formation from the shoot apical meristem
59	Odd-Arne Olsen	Genetic dissection of nuclear endosperm development
60	Woong June Park	Tissue-specific Expression of AUX1 in Maize Roots
61	Scott Poethig	The phase-specific identity of a leaf is specified after leaf initiation
62	Dorien Postma-Haarsma	CHARACTERIZATION OF KNOX CLASS HOMEOBOX GENES FROM
63	Peter Rogowsky	Esr genes show different levels of expression in the same region of
64	Mark Running	Mutations in thick tassel dwarf 1 affect meristem function
65	Matt Sauer	EPC a gene controlling invenile to adult phase change in maize
05	Matt Sauel	Bundle Sheath Defective? (BSD2): a povel protein required for the
66	Ruairidh Sawers	accumulation of RuBisCO
67	Michael Scanlon	Clonal analysis of NS1, cloning of ns2?: progress toward elucidating the function of the narrow sheath duplicate genes during maize leaf development.
68	Enrico Scarpella	A role for the rice homeobox gene Oshox1 in provascular cell fate commitment
69	Susanne Hansen	Expression analysis of ZmMADS1 and ZmMADS3 in different tissue cultures of maize
70	Anne W. Sylvester	Observing the predictability of random events during leaf development: Analysis of <i>rli1-warty</i> and other cell pattern mutants.
71	George Theodoris	Characterization of genes involved in organ development in maize
72	Bruce R Thomas	development
73	Leszek Vincent	Developing systematic descriptors and containment hierarchies for maize

74	Erik Vollbrecht	Characterization of ramosa1, a gene regulating indeterminacy in the maize inflorescence
75	Luzie U. Wingen	A candidate gene for the Tunicate1 locus
76	Yuan Zhang	Glucocorticoid Inducible cr4 Transcription in Transgenic Maize

V Genome Structure/Synteny

77	Chris Carson	Mutant Mapping in the Missouri Maize Project
78	Doug Davis	Progress On Maize Whole-Genome Radiation Hybrids
79	Georgia Davis	A High-Resolution Genetic Map of the B73 x Mo17 Population.
80	Michael Freeling	Announcing: The "Grass Hybrids" Public Database and Website
81	Huihua Fu	Genomic organization of the highly recombinogenic bz region of maize
82	Shailesh Lal	Gene discovery using the maize genome database ZmDB
83	Bruce May	Maize Targeted Mutagenesis: A Knockout Resource for the Maize Community
84	Wade Odland	Current and future uses of oat-maize addition and radiation hybrid lines
85	Leonore Reiser	The Arabidopsis Information Resource (TAIR)
86	David Remington	EVALUATING DISEQUILIBRIUM AMONG POLYMORPHISMS WITHIN
07	Haster Sanahaz Villada	AND DETWEEN CANDIDATE GENES IN MAIZE
0/	Hector Sanchez-Villeda	Maizedb - Galeway to All Public Maize Genome Data.
88	Steve Schroeder	Data Management in the Missouri Maize Project
		Comparison of nucleotide substitutions and multi-base insertions in b
89	David Selinger	alleles from Zea mays ssp and Zea luxurians suggests a relatively
		recent origin for most insertions.
90	Natalya Sharopova	Microsatellites in maize - development and mapping.
91	Xianghe Yan	Use of the transposon Ac as a gene-searching engine in the maize genome.

VI Molecular Genetics

Greenland Andy	Nuclear expression of T-urf13 in the tapetum mimics male sterility in CMS-T maize.
Donald Auger	Nuclear dosage effects on mitochondrial gene expression
Don Baldwin	Transcript profiling of the maize defense response to a fungal pathogen and its toxin, a histone deacetylase inhibitor
Deverie K. Bongard	SNP discovery using the maize EST database.
Brent Buckner	Sequence analysis of a recessive allele of the y1 gene of maize
Anne Bunner	Characterization of two Novel Arginine/Serince-Rich Splicing Factors that are Differentially Spliced in Maize
Todd Christensen	Identification and Characterization of Seven Rop GTPases in Maize
Maureen Clancy	Maize shrunken1 first intron-mediated enhancement of gene expression
Kathryn Clayton	Construction of a consensus SSR map for maize using a high- throughput marker screening system
Cintia M. Coelho	Genetic control of endosperm endoreduplication and modes of maternal control
Jennifer Cooper	Chromosome Arm Aneuploidy Causes Dosage Effects on <i>sucrose synthase1</i> and <i>shrunken1</i> RNA levels in maize plants
Chuck Dietrich	Characterization of the maize gl8 gene family and its role in the fatty acid elongase complex.
Brian Dilkes	Cell cycle regulatory components in the endosperm endoreduplication cycle.
Anjali Dogra	Dosage dependent control of heterosis
	Greenland Andy Donald Auger Don Baldwin Deverie K. Bongard Brent Buckner Anne Bunner Todd Christensen Maureen Clancy Kathryn Clayton Cintia M. Coelho Jennifer Cooper Chuck Dietrich Brian Dilkes Anjali Dogra

106	Jane Dorweiler	<i>Mediator of Paramutation2</i> is a dominant inhibitor of the establishment of paramutation
107	Cynthia Ernst	Utility of marker assisted selection for introgression of commercially
100	Wolfgong Coottol	important genes into elite germplasm
108	woligang Goetter	A CHI OROPI AST PROTECTIVE FUNCTION FOR //s1 //ethal.leaf-spot
109	John Gray	1) IN PLANTS ?
110	Baozhu Guo	Identification of a gene at the syntenic sh2-a1 region in maize acting as a QTL affecting silk maysin synthesis
111	Mei Guo	Insights into Molecular Basis of Heterosis: mRNA Profiles of Maize Hybrids and Inbred Parents
112	Jose Gutierrez-Marcos	Imprinted genes in maize endosperm
113	Linda Harris	Maize/Gibberella ear rot- maize genes induced in the plant/pathogen
114	Linda Harris	Maize genomics at ECORC
115	Tim Helentjaris	Insights from applying expression profiling to female development under stress.
116	Zihua Hu	Genome-scale RNA profiling of parentally imprinted genes in maize endosperm
117	Jinsheng Lai	Stable expression of the high methionine storage protein gene in transgenic progenies of various maize inbred lines
118	Carolyn Lawrence	Rooting the Kinesin Tree: A Phylogenomic Analysis
119	Jin Li	Site-selected Mutagenesis of the rad51b Gene in Maize
120	Dennis J. McCormac	maize.
121	Venugopal Mikkilineni	Genomic Organization of the Fatty Acid Desaturase-2 (FAD-2) EST's in Maize.
122	Snezana Mladenovic Drinic	Chromatin polymorphism dependent gene expression in maize
123	Rita-Ann Monde	Genetic analysis of thylakoid protein targeting
124	Daniel Moran	maize: A comparison of seed-specific promoters.
125	Rebecca J. Mroczek	ANALYSIS OF THE ORGANIZATION OF THE ABNORMAL-10
		CHROMOSOME OF MAIZE
126	Jorge Nieto-Sotelo	genetics
127	E. Owusuwaa Owusu	The Maize Tousled-Like Kinase Gene Family
128	UTA PASZKOWSKI	dinf1 and nope1, two mycorrhiza-specific mutants in maize
129	Varaporn Sangtong	maize
130	Yutaka Sato	Knock-out the knox genes
131	David Selinger	Characterization of a tissue-specific gene silencing phenomenon involving <i>B-Bolivia</i> and CaMV 35S/B chimeric transgenes.
132	Binzhang Shen	Ac tagging and characterization of a terpenoid cyclase gene induced by herbivore damage
133	Lyudmila Sidorenko	Novel type of P1-rr suppresison is caused by transgene carrying full length P1-rr promoter
134	David Skibbe	Characterization of the Zea mays Aldehyde Dehydrogenase Gene Family
135	Karolin Stahl	Expression of the DIMBOA biosynthesis genes
136	Maike Stam	The involvement of long distance communication in a natural case of gene silencing in plants, paramutation at the b locus in maize
137	Ann Stapleton	Wax helps: the glossy1 mutant is more sensitive to ultraviolet radiation
138	Shannon Stenehjem	Identification of genes transcribed from a QTL
139	Masaharu Suzuki	Conservation of maize VP1 function in the dicot, Arabidopsis.
140	Richard Thompson	rgf, a mutation reducing grain filling in maize through effects on basal

141	Mark van Haaren
142	Rik van Wijk
143	Hong Yao
144	Suling Zhao

endosperm and pedicel development High resolution AFLPÆ genetic maps of Maize Linkage Map Integration: An integrated genetic map of Zea mays L. Characterization of the 140-kb Multigenic a1-sh2 Interval Phosphate Transporters in Maize

VII Quantitative Traits

145	Edward Bruggeman	Relationships between yield, stability, and density tolerance
146	Shaun Bushman	Genetics of Chlorogenic Acid and Maysin Synthesis in Maize Silks
147	Ana Butron	Effect of p1 locus on synthesis of silk maysin, apimaysin, 3'- methoximaysin and chlorogenic acid in maize
148	Nick Lauter	Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms
149 150	Cesar Lopez Larissa Wilson	Heterotic Patterns Among Elite Flint Maize Populations from Argentina Associating Phenotypic Traits With Sequence Variation in Maize id1

VIII Transposable Elements

151	Ryuji Ishikawa	New members of RiceMutaor elements by deletion and non- homologous recombination with ectopic DNA segments
152	Ning Jiang	Tourist traps in the maize genome
153	Richard Langham	MuDR-like Sequences are Widespread in the Grasses
154	Zenaida V. Magbanua	ASSESSING THE UTILITY OF MITES AS MOLECULAR MARKERS
155	Adriano Marocco	Study of the chilling-induced chlorosis by using the virescent mutants of maize.
156	Robert Meeley	An Overview And Some Observations From Work On Mutator-Based Reverse Genetics
157	Christine Schaefer	Development of an En/Spm transposon system for barley
158	Richard Slotkin	Transposition Frequency of Rescue Mu
159	Xianghe Yan	Jittery, a low-copy, Mu-related transposon apparently mobilized by BSMV infection
160	Xiaoyu Zhang	mPIF Elements: Possible Non-autonomous Members of the PIF Transposable Elements
161	Jianbo Zhang	Non-linear Ac/Ds transposition and maize genome reorganization

Memorial in Honor of Earl B. Patterson

Earl B. Patterson passed away on Saturday May 1, 1999. He was 75 years old. He is survived by his children, Mark and Anne. His wife Betty passed away August 1, 1999.

His name is synonymous with the Maize Genetics Cooperation Stock Center whose current thriving status is attributable, in large measure, to his unstinting effort in its behalf. His deep imprint also remains with the annual Maize Genetics Conference, which he organized and presided over through the 60s, 70s and early 80s.

Earl Patterson was born on a farm in southeastern Nebraska near the town of Reynolds, on July 21, 1923, the youngest of nine unusually gifted children in a closely-knit family of four girls and five boys. Earl attended the University of Nebraska where, in 1947, after serving three years in the U.S. armed services during WWII, he received his B.S. degree in technical science, graduating first in his class. Dr. Frank Keim, long-time head of the Department of Agronomy at the University of Nebraska, and a genetics teacher who was familiar with Earl's excellent qualifications and interest in the subject, encouraged him to pursue advanced studies with Dr. E. G. Anderson, himself of Nebraska origin, at the California Institute of Technology in Pasadena. Upon Dr. Keim's recommendation, Earl's application was accepted and his graduate years were spent in the Biology Division at Cal Tech with Dr. Anderson as his mentor. He received his Ph.D. degree in genetics at that institution in 1952, and stayed at Cal Tech for another year as a postdoctoral fellow.

In 1953 Earl accepted a position in the Departments of Botany and Agronomy at the University of Illinois in Urbana. Here he was responsible for the Maize Genetics Cooperation Stock Center which had just been moved from Cornell University to Urbana. Two years later, in 1955, he became project leader of that program in the Department of Agronomy. Earlier maintenance of the maize genetic stocks at Cornell led to selection of strains that were adapted to the short growing season at Ithaca but only poorly suited to culture in the Corn Belt and most other corn growing regions. As a result, Earl Patterson's first task in his new position at Illinois was to commence the conversion of these many genetic stocks to inbred and hybrid backgrounds that were better adapted to most corn growing regions. Earl maintained the stock center through these formative years until 1966 when he relinquished his stock center responsibilities to concentrate on research. Earl's research focused on the isolation and characterization of male sterility mutants in maize. He found numerous new nuclear male-sterile mutations. When Southern Corn Leaf Blight, a disease specific to T-type male-sterile cytoplasm, struck the hybrid corn industry, seed companies reverted to manual detasselling. Earl developed a method to use his nuclear male-sterile traits to replace cms-T to avoid detasselling. Combining his male-sterile traits with various chromosomal aberration stocks, he developed a new method for producing hybrid corn seed. This work resulted in the issuing of two patents.

In 1977, Earl stepped up to fill the gap left by the retirement from teaching of the head instructor of the introductory genetics course. He was lead instructor for this course, in collaboration with faculty from the Animal Sciences Department, until 1987. The average enrollment was 80-90 students per semester.

When the Director position at the Maize Genetics Cooperation Stock Center again became vacant in 1986, Larry Schrader, then Head of the Agronomy Department at Illinois, persuaded Earl to resume management of the Stock Center. It was to the great benefit of all maize researchers that Earl returned to that position at a time when future support and direction of the center were uncertain. He continued that effort until his retirement in 1993.

Earl always gave "distribution" of seed stocks very special attention. On each request for seed, he brought to bear his encyclopedic knowledge of maize genetics lore. A request for seeds often resulted in the shipment of more packets than requested because of Earl's uncanny ability to anticipate needs and problems associated with growing and handling the items requested. All manner of useful suggestions were likely to be found in the letters that accompanied the packets of seeds requested. There is no doubt that a collection of letters that Earl has sent in response to seed requests over the years would be a valuable resource for maize geneticists.

While the Maize Genetics Cooperation Stock Center is today well supported and a thriving organization, it was not always so. In its earlier years at Illinois, funds for its operation were uncertain and often meager. With an improved internal status for the Stock Center in recent years has come increased support from the Agricultural Research Service of the United States Department of Agriculture, and in 1992 this agency assumed responsibility for operations and funding of the program. To Earl, whose labors, and sometime frustrations, have been so closely associated with the development of the Stock Center, the strong position that it has recently achieved was a source of great satisfaction and pride.

In 1958, Earl Patterson along with John Laughnan, Ed Coe, and Gerry Neuffer, talked about the possibility of an annual informal get-together of maize geneticists and their graduate students. The first meeting was in January 1959, and took place at Allerton Park, a part of a farm facility owned by the University of Illinois and located just outside of Monticello, Illinois, There were about twelve participants at that first meeting, so few that it could be held in the quite small Oak Room in Allerton Park House. These maize meetings as they came to be called were delightfully informal and grew in numbers of participants over the years. They were presided over by Earl. He made all the arrangements for use of the facility and dates of the meetings each year. He sent out notices of meetings to potential participants and arranged for ground transportation to Allerton House. There was no prearranged program of speakers; participants would arrive on Friday evening and at that time or early the next morning Earl would talk with people interested in sharing their research experiences and in that way developed a program for the get-together. At first, there was no need for a microphone, even for the most soft-spoken individuals, but as the meetings grew in size it necessarily moved to amplification. Earl introduced the speakers, adjusted the microphone, operated the overhead, arranged for the right kind of soft chalk and erased the blackboard, all with a special finesse that earned for him the position of permanent chair of all sessions. In addition to all these things Earl presided over the gene mapping sessions usually held on Saturday evenings. As the meetings grew in size, it was recognized that some modest level of organization was Earl's suggestion of establishing a steering committee for the annual meetings was needed. approved by the maize group. Today this committee continues to serve an important function in the Maize Genetics community.

After 25 years, the maize meetings grew to such a size that Allerton House could no longer accommodate them and so, regretfully, the maize genetics community was obliged to move the meetings from this treasured site. This past March the 41st annual meeting of maize geneticists, now called the Maize Genetics Conference, was held at the Grand Geneva Convention Center in Lake Geneva, WI, with over 400 teachers and researchers in attendance. Younger members of the maize genetics group are probably not acquainted with Earl Patterson nor aware of the reverence in which the Allerton meetings are still held by their predecessors. However, they should know that it was Earl who established the original format for these meetings and successfully propagated the informal atmosphere that is still recognizable in the present-day meetings, in spite of their size.

(Reprinted from the University of Illinois memorial)